Short-Term Temporal Convolutional Networks for Dynamic Hand Gesture Recognition

网络结构

摘要

The purpose of gesture recognition is to recognize meaningful movements of human bodies, and gesture recognition is an important issue in computer vision. In this paper, we present a multimodal gesture recognition method based on 3D densely convolutional networks (3D-DenseNets) and improved temporal convolutional networks (TCNs). The key idea of our approach is to find a compact and effective representation of spatial and temporal features, which orderly and separately divide task of gesture video analysis into two parts, spatial analysis and temporal analysis. In spatial analysis, we adopt 3D-DenseNets to learn short-term spatio-temporal features effectively. Subsequently, in temporal analysis, we use TCNs to extract temporal features and employ improved Squeeze-and-Excitation Networks (SENets) to strengthen the representational power of temporal features from each TCNs' layers. The method has been evaluated on the VIVA and the NVIDIA Gesture Dynamic Hand Gesture Datasets. Our approach obtains very competitive performance on VIVA benchmarks with the classification accuracies of 91.54%, and achieve state-of-the art performance with 86.37% accuracy on NVIDIA benchmark.

王 翀
王 翀
副教授

研究兴趣:人机交互、人工智能、计算机视觉、多媒体计算.